By Topic

Analysis of shallow-water experimental acoustic data including a comparison with a broad-band normal-mode-propagation model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Simons, D.G. ; TNO Phys. & Electron. Lab., The Hague, Netherlands ; McHugh, R. ; Snellen, M. ; McCormick, N.H.
more authors

Channel temporal variability, resulting from fluctuations in oceanographic parameters, is an important issue for reliable communications in shallow-water-long-range acoustic propagation. As part of an acoustic model validation exercise, audio-band acoustic data and oceanographic data were collected from shallow waters off the West Coast of Scotland. These data have been analyzed for temporal effects. The average impulse response for this channel has been compared with simulations using a fast broad-band normal-mode propagation model. In this paper, we also introduce a novel technique for estimating and removing the bistatic reverberation contribution from the data. As propagation models do not necessarily account for reverberation, it has to be extracted from the signals when comparing measured and modeled transmission loss

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:26 ,  Issue: 3 )