Cart (Loading....) | Create Account
Close category search window

On-line re-optimisation control of a batch polymerisation reactor based on a hybrid recurrent neural network model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuan Tian ; Dept. of Chem. & Process Eng., Univ. of Newcastle, Newcastle upon Tyne, UK ; Jie Zhang ; Morris, J.

A hybrid recurrent neural network model based on-line re-optimisation control strategy is developed for batch polymerisation reactors. The hybrid model contains a simplified mechanistic model covering material balance and simplified reaction kinetics only and recurrent neural networks. Based on this hybrid neural network model, optimal control policy can be calculated. A difficulty in the optimal control of batch polymerisation reactors is that optimisation effort can be seriously hampered by unknown disturbances such as reactive impurities and reactor fouling. A technique for on-line estimation of reactive impurity and reactor fouling has been developed by Zhang et al. (1999). In this contribution, on-line reactive impurity estimation is combined with batch reactor optimal control to form a novel re-optimisation control strategy. When there exists an unknown amount of reactive impurities, the off-line calculated optimal control profile will be no longer optimal. On-line impurity estimation is applied to estimate the amount of reactive impurities during the early stage of the batch. Based on the estimated amount of reactive impurities, on-line re-optimisation is applied to calculate the optimal reactor temperature profile for the remaining time period of the batch reactor operation. This approach is illustrated on the optimisation control of a simulated batch MMA polymerisation process

Published in:

American Control Conference, 2001. Proceedings of the 2001  (Volume:1 )

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.