By Topic

Double-gate fully-depleted SOI transistors for low-power high-performance nano-scale circuit design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Zhang ; Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; K. Roy ; D. B. Janes

Double-gate fully-depleted (DGFD) SOI circuits are regarded as the next generation VLSI circuits. This paper investigates the impact of scaling on the demand and challenges of DGFD SOI circuit design for low power and high performance. We study how the added back-gate capacitance affects the circuit power and performance; how to trade off the enhanced short-channel effect immunity with the added back-channel leakage; and how the coupling between the front- and back-gates affects circuit reliability. Our analyses over different technology generations using MEDICI device simulator show that DGFD SOI circuits have significant advantages in driving high output load. DGFD SOI circuits also show excellent ability in controlling leakage current. However, for low output load, no gain is obtained for DGFD SOI circuits. Also, it is necessary to optimize the back-gate oxide thickness for best leakage control. Moreover, threshold variation may cause reliability problem for thin back-gate oxide DGFD SOI circuits operated at low power supply voltage

Published in:

Low Power Electronics and Design, International Symposium on, 2001.

Date of Conference:

2001