By Topic

Gain optimization of germanosilicate fiber Raman amplifier and its applications in the compensation of Raman-induced crosstalk among wavelength division multiplexing channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seo, H.S. ; Telecommun. Basic Res. Lab., Electron. & Telecommun. Res. Inst., Taejeon, South Korea ; Oh, K. ; Paek, U.C.

Spectral characteristics of the stimulated Raman scattering (SRS) process were theoretically investigated for step-index silica optical fibers with various GeO2 concentrations. Optimal-fiber lengths and germanium concentration, where the first Stokes power reaches maximum, were calculated at various pump power levels for application in Raman amplifiers. Based on this analysis, we proposed and experimentally demonstrated a new channel-equalizing technique to simultaneously compensate Raman-induced crosstalk and amplify wavelength-division-multiplexing (WDM) signals using a discrete Raman amplifier in the 1.5-μm range. As a further application of SRS in germanosilicate glass fibers, we introduce an all-optical variable attenuator for channel equalization that could be used in dynamic optical power tilt control in WDM systems

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 9 )