By Topic

Theory of latency-insensitive design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. P. Carloni ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; K. L. McMillan ; A. L. Sangiovanni-Vincentelli

The theory of latency-insensitive design is presented as the foundation of a new correct-by-construction methodology to design complex systems by assembling intellectual property components. Latency-insensitive designs are synchronous distributed systems and are realized by composing functional modules that exchange data on communication channels according to an appropriate protocol. The protocol works on the assumption that the modules are stallable, a weak condition to ask them to obey. The goal of the protocol is to guarantee that latency-insensitive designs composed of functionally correct modules behave correctly independently of the channel latencies. This allows us to increase the robustness of a design implementation because any delay variations of a channel can be “recovered” by changing the channel latency while the overall system functionality remains unaffected. As a consequence, an important application of the proposed theory is represented by the latency-insensitive methodology to design large digital integrated circuits by using deep submicrometer technologies

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:20 ,  Issue: 9 )