By Topic

AMGIE-A synthesis environment for CMOS analog integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
G. Van der Plas ; ESAT, Katholieke Univ., Leuven, Heverlee, Belgium ; G. Debyser ; F. Leyn ; K. Lampaert
more authors

A synthesis environment for analog integrated circuits is presented that is able to drastically increase design and layout productivity for analog blocks. The system covers the complete design flow from specification over topology selection and optimal circuit sizing down to automatic layout generation and performance characterization. It follows a hierarchical refinement strategy for more complex cells and is process independent. The sizing is based on an improved equation-based optimization approach, where the circuit behavior is characterized by declarative models that are then converted in a sequential design plan. Supporting tools have been developed to reduce the total effort to set up a new circuit topology in the system's database. The performance-driven layout generation tool guarantees layouts that satisfy all performance constraints. Redesign support is included in the design flow management to perform backtracking in case of design problems. The experimental results illustrate the productiveness and efficiency of the environment for the synthesis and process tuning of frequently used analog cells

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:20 ,  Issue: 9 )