Cart (Loading....) | Create Account
Close category search window
 

The G-algorithm for extraction of robust decision rules - children's postoperative intra-atrial arrhythmia case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kusiak, A. ; Intelligent Syst. Lab., Iowa Univ., Iowa City, IA, USA ; Law, I.H. ; MacDonald, D., II

Clinical medicine is facing a challenge of knowledge discovery from the growing volume of data. In this paper, a data mining algorithm (the G-algorithm) is proposed for extraction of robust rules that can be used in clinical practice for better understanding and prevention of unwanted medical events. The G-algorithm is applied to a data set obtained for children born with a malformation of the heart (univentricular heart). As a result of the Fontan surgical procedure, designed to palliate the children, 10%-35% of patients post-operatively develop an arrhythmia known as intra-atrial re-entrant tachycardia. There is an obvious need to identify those children that may develop the tachycardia before the surgery is performed. Prior attempts to identify such children with statistical techniques have been unrewarding. The G-algorithm shows that there exists an unambiguous relationship between measurable features and the tachycardia. The data set used in this study shows that, for 78.08% of infants, the occurrence of tachycardia can be accurately predicted. The authors' prior computational experience with diverse medical data sets indicates that the percentage of accurate predictions may become even higher if data on additional features is collected for a larger data set.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Sept. 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.