By Topic

Compensatory fuzzy neural networks-based intelligent detection of abnormal neonatal cerebral Doppler ultrasound waveforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Seker ; Biomed. Comput. Res. Group, Coventry Univ., UK ; D. H. Evans ; N. Aydin ; E. Yazgan

Compensatory fuzzy neural networks (CFNN) without normalization, which can be trained with a backpropagation learning algorithm, are proposed as a pattern recognition technique for the intelligent detection of Doppler ultrasound waveforms of abnormal neonatal cerebral hemodynamics. Doppler ultrasound signals were recorded from the anterior cerebral arteries of 40 normal full-term babies and 14 mature babies with intracranial pathology. The features of normal and abnormal groups as inputs to the pattern recognition algorithms were extracted from the maximum-velocity waveforms by using principal component analysis. The proposed technique is compared with the CFNN with normalization and other pattern recognition techniques applied to Doppler ultrasound signals from various arteries. The results show that the proposed method is superior to the other techniques, and can be a powerful way to analyze Doppler ultrasound signals from various arteries.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:5 ,  Issue: 3 )