By Topic

Quantum Kolmogorov complexity based on classical descriptions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. M. B. Vitanyi ; Centrum voor Wiskunde en Inf., Amsterdam, Netherlands

We develop a theory of the algorithmic information in bits contained in an individual pure quantum state. This extends classical Kolmogorov complexity to the quantum domain retaining classical descriptions. Quantum Kolmogorov complexity coincides with the classical Kolmogorov complexity on the classical domain. Quantum Kolmogorov complexity is upper-bounded and can be effectively approximated from above under certain conditions. With high probability, a quantum object is incompressible. Upper and lower bounds of the quantum complexity of multiple copies of individual pure quantum states are derived and may shed some light on the no-cloning properties of quantum states. In the quantum situation complexity is not subadditive. We discuss some relations with “no-cloning” and “approximate cloning” properties

Published in:

IEEE Transactions on Information Theory  (Volume:47 ,  Issue: 6 )