By Topic

Online prediction of the running time of tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. A. Dinda ; Dept. of Comput. Sci., Northwestern Univ., Evanston, IL, USA

We describe and evaluate the Running Time Advisor (RTA), a system that can predict the running time of a compute-bound task on a typical shared, unreserved commodity host. The prediction is computed from linear time series predictions of host load and takes the form of a confidence interval that neatly expresses the error associated with the measurement and prediction processes, error that must be captured to make statistically valid decisions based on the predictions. Adaptive applications make such decisions in pursuit of consistent high performance, choosing, for example, the host where a task is most likely to meet its deadline. We begin by describing the system and summarizing the results of our previously published work on host load prediction (P.A. Dinda, 1999; 2000)We then describe our algorithm for computing predictions of running time from host load predictions. Finally, we evaluate the system using over 100000 randomized testcases run on 39 different hosts

Published in:

High Performance Distributed Computing, 2001. Proceedings. 10th IEEE International Symposium on

Date of Conference: