By Topic

Discovering nontrivial repeating patterns in music data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jia-Lien Hsu ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chih-Chin Liu ; A. L. P. Chen

A repeating pattern in music data is defined as a sequence of notes which appears more than once in a music object. The themes are a typical kind of repeating patterns. The themes and other nontrivial repeating patterns are important music features which can be used for both content-based retrieval of music data and music data analysis. In this paper, we propose two approaches for fast discovering nontrivial repeating patterns in music objects. In the first approach, we develop a data structure called correlative matrix and its associated algorithms for extracting the repeating patterns. In the second approach, we introduce a string-join operation and a data structure called RP-tree for the same purpose. Experiments are performed to compare these two approaches with others. The results are further analyzed to show the efficiency and the effectiveness of our approaches

Published in:

IEEE Transactions on Multimedia  (Volume:3 ,  Issue: 3 )