Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Dual work function metal gate CMOS technology using metal interdiffusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Polishchuk, I. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Ranade, P. ; Tsu-Jae King ; Chenming Hu

In this letter, we propose a new metal-gate CMOS technology that uses a combination of two metals to achieve low threshold voltages for both n- and p-MOSFET's. One of the gate electrodes is formed by metal interdiffusion so that no metal has to be etched away from the gate dielectric surface. Consequently, this process does not disturb the delicate thin gate dielectric and preserves its uniformity and integrity. This new technology is demonstrated for the Ti-Ni metal combination that produces gate electrodes with 3.9 eV and 5.3 eV work functions for n-MOS and p-MOS devices respectively.

Published in:

Electron Device Letters, IEEE  (Volume:22 ,  Issue: 9 )