By Topic

Deep-submicrometer DC-to-RF SOI MOSFET macro-model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Infguez, B. ; Lab. de Microelectron., Univ. Catholique de Louvain, Belgium ; Raskin, J.-P. ; Demeus, L. ; Neve, A.
more authors

We present a submicrometer RF fully depleted SOI MOSFET macro-model based on a complete extrinsic small-signal equivalent circuit and an improved CAD model for the intrinsic device. The delay propagation effects in the channel are modeled by splitting the intrinsic transistor into a series of shorter transistors, for each of which a quasistatic device model can be used. Since the intrinsic device model is charge-based, our RF SOI MOSFET model can be used in both small and large-signal analyses. The model has been validated for frequencies up to 40 GHz and effective channel lengths down to 0.16 μm

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 9 )