Cart (Loading....) | Create Account
Close category search window
 

Online Bayesian tree-structured transformation of HMMs with optimal model selection for speaker adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper presents a new recursive Bayesian learning approach for transformation parameter estimation in speaker adaptation. Our goal is to incrementally transform or adapt a set of hidden Markov model (HMM) parameters for a new speaker and gain large performance improvement from a small amount of adaptation data. By constructing a clustering tree of HMM Gaussian mixture components, the linear regression (LR) or affine transformation parameters for HMM Gaussian mixture components are dynamically searched. An online Bayesian learning technique is proposed for recursive maximum a posteriori (MAP) estimation of LR and affine transformation parameters. This technique has the advantages of being able to accommodate flexible forms of transformation functions as well as a priori probability density functions (PDFs). To balance between model complexity and goodness of fit to adaptation data, a dynamic programming algorithm is developed for selecting models using a Bayesian variant of the “minimum description length” (MDL) principle. Speaker adaptation experiments with a 26-letter English alphabet vocabulary were conducted, and the results confirmed effectiveness of the online learning framework

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.