By Topic

A new empirical large-signal model of Si LDMOSFETs for high-power amplifier design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Youngoo Yang ; Dept. of Electron. & Electr. Eng., Pohang Univ. of Sci. & Technol., South Korea ; Young Yun Woo ; Jaehyok Yi ; Kim, Bumman

We propose a new empirical large-signal model of silicon laterally diffused MOSFETs for the design of various modes of high-power amplifiers. The new channel current model has only nine parameters that represent the unique operation principles of a MOSFET. In the channel current model, we include the thermal phenomena of high-power devices. To accurately characterize high-power devices, we incorporate the channel heating and heat-sink heating effects by providing two thermal capacitances and two thermal resistances. Nonlinear capacitances, including deep subthreshold and triode regions, as well as normal saturation regions, are extracted and modeled. For validation of our model, a 1.4-GHz 5-W amplifier is implemented, and the measured and simulated results match very well

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 9 )