By Topic

Retrieving soil moisture from simulated brightness temperatures by a neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuei-An Liou ; Center for Space & Remote Sensing Res., Nat. Central Univ., Chung-Li, Taiwan ; Shou-Fang Liu ; Wang, Wen-June

The authors present the retrievals of surface soil moisture (SM) from simulated brightness temperatures by a newly developed error propagation learning backpropagation (EPLBP) neural network. The frequencies of interest include 6.9 and 10.7 GHz of the advanced microwave scanning radiometer (AMSR) and 1.4 GHz (L-band) of the soil moisture and ocean salinity (SMOS) sensor. The land surface process/radiobrightness (LSP/R) model is used to provide time series of both SM and brightness temperatures at 6.9 and 10.7 GHz for AMSRs viewing angle of 55°, and at L-band for SMOS's multiple viewing angles of 0°, 10°, 20°, 30°, 40°, and 50° for prairie grassland with a column density of 3.7 km/m2. These multiple frequencies and viewing angles allow the authors to design a variety of observation modes to examine their sensitivity to SM. For example, L-band brightness temperature at any single look angle is regarded as an L-band one-dimensional (1D) observation mode. Meanwhile, it can be combined with either the observation at the other angles to become an L-band two-dimensional (2D) or a multiple dimensional observation mode, or with the observation at 6.9 or 10.7 GHz to become a multiple frequency/dimensional observation mode. In this paper, it is shown that the sensitivity of radiobrightness at AMSR channels to SM is increased by incorporating L-band radiobrightness. In addition, the advantage of an L-band 2D or a multiple dimensional observation mode over an L-band 1D observation mode is demonstrated

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 8 )