By Topic

A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paloscia, S. ; Istituto di Ricerca sulle Onde Elettromagnetiche, CNR, Firenze, Italy ; Macelloni, G. ; Santi, E. ; Koike, T.

The sensitivity of microwave emission at different frequencies to soil moisture in bare and vegetated soils has been investigated using experimental data. Since the best frequency for the measurement of soil moisture (L-band) is absent in current satellite sensors, it is necessary to seek alternative solutions. An algorithm is proposed for the retrieval of soil moisture based on the sensitivity to moisture of both the brightness temperature and the polarization index at C-band, one that is able to correct for the effect of vegetation by means of the polarization index at X-band. The algorithm has been tested by using experimental data collected with airborne microwave radiometers on agricultural areas and validated by using the data sets of special sensor microwave/imager (SMM/I) and scanning multichannel microwave radiometer (SMMR). These research activities are planned in view of coming new satellites: AQUA (NASA) and ADEOS-II (NASDA), which will be launched by the end of 2001. These will have new generation microwave radiometers (AMSR-E and AMSR) onboard, which show much better characteristics with respect to the previous sensors, in particular an enhanced spatial resolution

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 8 )