By Topic

Regularization approach to inductive genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nikolaev, N.Y. ; Dept. of Math. & Comput. Sci., London Univ., UK ; Iba, H.

This paper presents an approach to regularization of inductive genetic programming tuned for learning polynomials. The objective is to achieve optimal evolutionary performance when searching high-order multivariate polynomials represented as tree structures. We show how to improve the genetic programming of polynomials by balancing its statistical bias with its variance. Bias reduction is achieved by employing a set of basis polynomials in the tree nodes for better agreement with the examples. Since this often leads to over-fitting, such tendencies are counteracted by decreasing the variance through regularization of the fitness function. We demonstrate that this balance facilitates the search as well as enables discovery of parsimonious, accurate, and predictive polynomials. The experimental results given show that this regularization approach outperforms traditional genetic programming on benchmark data mining and practical time-series prediction tasks

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:5 ,  Issue: 4 )