By Topic

Applying an evolutionary algorithm to telecommunication network design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arabas, J. ; Inst. of Electron. Syst., Warsaw Univ. of Technol., Poland ; Kozdrowski, S.

This paper deals with the application of evolutionary computation to telecommunication network design. Design of a two-layer network is considered, where the upper-layer (UL) network uses resources of the lower-layer (LL) network. UL links determine demands for the LL and are implemented using LL paths (admissible paths). Within a fixed LL network topology, given the demands and admissible paths, we aim to find the LL link capacities for implementing the UL links, minimizing the cost of the LL. Robust design issues are also taken into consideration, allowing for failure of a certain part of the LL and postulating that, after some re-allocation in the LL, demands are still realized to an assumed extent. An algorithm based on an evolutionary technique is introduced, with problem-specific genetic operators to improve computing efficiency. A theoretical study of properties of the operators is made and several experiments are performed to tune the parameters of the algorithm. Finally, its performance is compared with other design techniques, including integer programming

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:5 ,  Issue: 4 )