By Topic

Joint iterative decoding of serially concatenated error control coded CDMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhenning Shi ; Dept. of Electr. Eng., Utah Univ., Salt Lake City, UT, USA ; C. Schlegel

Joint iterative decoding of multiple forward error control (FEC) encoded data streams is studied for linear multiple access channels, such as code-division multiple access (CDMA). It is shown that such systems can be viewed as serially concatenated coding systems, and that iterative soft-decision decoding can be performed successfully To improve power efficiency, powerful FEC codes are used. These FEC codes are themselves serially concatenated. The overall transmission system can be viewed as the concatenation of two error control codes with the linear multiple access channel, and soft-decision decoders are used at each stage. A variance transfer function approach applied to the analysis of this system captures the role of the component decoders in an overall iterative decoding system. We show that this approach forms a methodology to study the effects of the component codes as well as that of the iteration schedule. Analysis and simulation examples are presented for transmission systems that operate close to the Shannon limit and illustrate the accuracy of the analysis

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:19 ,  Issue: 8 )