Cart (Loading....) | Create Account
Close category search window
 

Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Figueiredo, M.A.T. ; Inst. de Telecomunicacoes, Inst. Superior Tecnico, Lisbon, Portugal ; Nowak, R.D.

The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. However, most of these methods have free parameters which have to be adjusted or estimated. In this paper, we propose a wavelet-based denoising technique without any free parameters; it is, in this sense, a “universal” method. Our approach uses empirical Bayes estimation based on a Jeffreys' noninformative prior; it is a step toward objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed nonlinear shrinkage/thresholding rule which performs better than other more computationally demanding methods

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 9 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.