By Topic

Multiscale image segmentation using wavelet-domain hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyeokho Choi ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Baraniuk, R.G.

We introduce a new image texture segmentation algorithm, HMTseg, based on wavelets and the hidden Markov tree (HMT) model. The HMT is a tree-structured probabilistic graph that captures the statistical properties of the coefficients of the wavelet transform. Since the HMT is particularly well suited to images containing singularities (edges and ridges), it provides a good classifier for distinguishing between textures. Utilizing the inherent tree structure of the wavelet HMT and its fast training and likelihood computation algorithms, we perform texture classification at a range of different scales. We then fuse these multiscale classifications using a Bayesian probabilistic graph to obtain reliable final segmentations. Since HMTseg works on the wavelet transform of the image, it can directly segment wavelet-compressed images without the need for decompression into the space domain. We demonstrate the performance of HMTseg with synthetic, aerial photo, and document image segmentations

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 9 )