By Topic

Inline capacitive and DC-contact MEMS shunt switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muldavin, Jeremy B. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Rebeiz, G.M.

This paper presents inline capacitive MEMS shunt switches suitable for X/K-band and Ka/V-band applications. The inline switch allows for a low- or high-inductance connection to the ground plane without changing the mechanical characteristics of the MEMS bridge. Excellent isolation and loss are achieved with this design, and the performance is very similar to the standard capacitive MEMS shunt switch. Also, a new metal-to-metal contact MEMS shunt switch is presented. A novel pull-down electrode is used which applies the electrostatic force at the same location as the metal-to-metal contact area. A contact resistance of 0.15-0.35 /spl Omega/ is repeatable, and results in an isolation of -40 dB at 0.1-3 GHz. The measured isolation is still better than -20 dB at 40 GHz. The application areas are in high-isolation/low-loss switches for telecommunication and radar systems.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:11 ,  Issue: 8 )