By Topic

Stable model reference adaptive fuzzy control of a class of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Koo, T.J. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA

In this paper, we propose a new adaptive fuzzy control scheme called model reference adaptive fuzzy control (MRAFC). The MRAFC scheme employs a reference model to provide closed-loop performance feedback for generating or modifying a fuzzy controller's knowledge base. The MRAFC scheme grew from ideas in conventional model reference adaptive control (MRAC). The MRAFC scheme is developed to perform adaptive feedback linearization to a class of nonlinear systems. A class of fuzzy controllers, which can be expressed in an explicit form, is used as the primary controller. Based on Lyapunov's second method, we have developed MRAFC schemes and derived fuzzy rule adaptive laws. Hence, not only the stability of the system can be assured but also the performance, such as the issues of robustness and parameter convergence, of the MRAFC system can be analyzed explicitly. We showed that in the case of no modeling error, the state error converges to zero asymptotically. In the case that persistent excitation is satisfied, we showed that the MRAFC system is asymptotically stable. By considering the periodic signal as reference input signal, we showed that the square wave can make the MRAFC system be persistently excited. The feasibility of applying these techniques has been demonstrated by considering the control of an inverted pendulum in following a reference model response

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:9 ,  Issue: 4 )