By Topic

Low-complexity fuzzy relational clustering algorithms for Web mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Krishnapuram, R. ; IBM India Res. Lab., Indian Inst. of Technol., New Delhi, India ; Joshi, A. ; Nasraoui, O. ; Yi, L.

This paper presents new algorithms-fuzzy c-medoids (FCMdd) and robust fuzzy c-medoids (RFCMdd)-for fuzzy clustering of relational data. The objective functions are based on selecting c representative objects (medoids) from the data set in such a way that the total fuzzy dissimilarity within each cluster is minimized. A comparison of FCMdd with the well-known relational fuzzy c-means algorithm (RFCM) shows that FCMdd is more efficient. We present several applications of these algorithms to Web mining, including Web document clustering, snippet clustering, and Web access log analysis

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:9 ,  Issue: 4 )