By Topic

A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shiqian Wu ; Centre for Signal Process., Nanyang Technol. Univ., Singapore ; Meng Joo Er ; Yang Gao

A fast approach for automatically generating fuzzy rules from sample patterns using generalized dynamic fuzzy neural networks (GD-FNNs) is presented. The GD-FNN is built based on ellipsoidal basis functions and functionally is equivalent to a Takagi-Sugeno-Kang fuzzy system. The salient characteristics of the GD-FNN are: (1) structure identification and parameters estimation are performed automatically and simultaneously without partitioning input space and selecting initial parameters a priori; (2) fuzzy rules can be recruited or deleted dynamically; (3) fuzzy rules can be generated quickly without resorting to the backpropagation (BP) iteration learning, a common approach adopted by many existing methods. The GD-FNN is employed in a wide range of applications ranging from static function approximation and nonlinear system identification to time-varying drug delivery system and multilink robot control. Simulation results demonstrate that a compact and high-performance fuzzy rule-base can be constructed. Comprehensive comparisons with other latest approaches show that the proposed approach is superior in terms of learning efficiency and performance

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:9 ,  Issue: 4 )