By Topic

On a discrete-time stochastic learning control algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Saab, S.S. ; Dept. of Electr. & Comput. Eng., Lebanese Univ., Beirut, Lebanon

In an earlier paper by the author (2001), the learning gain for a D-type learning algorithm, is derived based on minimizing the trace of the input error covariance matrix for linear time-varying systems. It is shown that, if the product of the input/output coupling matrices is full-column rank, then the input error covariance matrix converges uniformly to zero in the presence of uncorrelated random disturbances, whereas, the state error covariance matrix converges uniformly to zero in the presence of measurement noise. However, in general, the proposed algorithm requires knowledge of the state matrix. In this note, it is shown that equivalent results can be achieved without the knowledge of the state matrix. Furthermore, the convergence rate of the input error covariance matrix is shown to be inversely proportional to the number of learning iterations

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 8 )