Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A polynomial algorithm for testing diagnosability of discrete-event systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shengbing Jiang ; Dept. of Electr. Eng., Kentucky Univ., Lexington, KY, USA ; Zhongdong Huang ; Chandra, V. ; Kumar, R.

Failure diagnosis in large and complex systems is a critical task. In the realm of discrete-event systems, Sampath et al. (1995) proposed a language based failure diagnosis approach. They introduced the diagnosability for discrete-event systems and gave a method for testing the diagnosability by first constructing a diagnoser for the system. The complexity of this method of testing diagnosability is exponential in the number of states of the system and doubly exponential in the number of failure types. We give an algorithm for testing diagnosability that does not construct a diagnoser for the system, and its complexity is of fourth order in the number of states of the system and linear in the number of the failure types

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 8 )