Cart (Loading....) | Create Account
Close category search window
 

Asymptotic capacity of space-time coding for arbitrary fading: a closed form expression using Girko's law

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scaglione, A. ; Dept. of Electr. Eng. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA ; Sakoglu, U.

Several works addressed the problem of deriving the, asymptotic capacity of a wireless system with space diversity in random fading. However, the theory of random matrices was never used in evaluating the asymptotic optimal performance in closed form. By increasing the number of transmit and receive antennas the resulting capacity tend to be a stable value independent of the fading realization. This surprising result is a consequence of Girko's (1984) law, stating that the asymptotic distribution of the eigenvalues of a random matrix, with independent identically distributed zero mean complex entries, is a circle. The conditions on the probability density function of the matrix entries are satisfied by the majority of random non-line of sight fading models. Using this theory in this paper we derive the close form expression for the asymptotic capacity of a system with transmit and receive diversity, assuming independent flat fading for each transmit-receive antenna link, with equal distribution. Our formula fits the numerical results even if the number of transmit an receive antennas as small as ten

Published in:

Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on  (Volume:4 )

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.