Cart (Loading....) | Create Account
Close category search window
 

Low complexity anti-jam space-time processing for GPS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper investigates the performance of reduced rank spacetime processors in the context of anti-jam mitigation for an M-code based GPS receiver utilizing a circular array. Several adaptive processing algorithms are discussed utilizing power minimization techniques. It is assumed an INS (inertial navigation system) or direction finding algorithm is incorporated into the receiver for satellite look direction based algorithms. Reduced rank space-time processing is accomplished via the innovative multistage Wiener filter (MSWF). It is demonstrated that the MSWF does not require matrix inversion, thereby reducing computational complexity. The processing algorithms are compared in terms of available degrees of freedom and distortion of the GPS cross correlation function (CCF)

Published in:

Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on  (Volume:4 )

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.