Cart (Loading....) | Create Account
Close category search window
 

Finite-alphabet based channel estimation for OFDM and related multicarrier systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shengli Zhou ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Giannakis, G.B.

Novel blind channel estimators based on the finite alphabet property of information symbols are derived in this paper for OFDM and related multicarrier code-division multiple access (MC-CDMA) systems. The resulting algorithms are applicable not only to standard OFDM transmitters with cyclic prefix, but also to the zero padded OFDM transmissions that improve symbol recovery at the expense of altering the transmitter and complicating the equalizer. Based on FFT-processed received data, channel identifiability is guaranteed regardless of channel zero locations and various channel estimation algorithms become available by trading on the complexity for performance. Unlike existing blind channel estimators, the proposed alternatives require short data records especially for PSK transmissions. The inherent scalar ambiguity is easily resolved because it has unit amplitude and phase values drawn from a finite set. Decoupling channel from symbol estimation enables a phase-directed operation that improves upon decision-directed schemes that are known to suffer from error propagation. Practical issues are also addressed including the presence of frequency guard intervals, constellation and power loading, various frame designs, coded transmissions as well as semi-blind and online implementations for systems with training sequences. The algorithms are tested with simulations and also compared with existing alternatives in a realistic HIPERLAN/2 setting

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 8 )

Date of Publication:

Aug 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.