Cart (Loading....) | Create Account
Close category search window

Corrugated long-period fiber gratings as strain, torsion, and bending sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chunn-Yenn Lin ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wang, Lon A. ; Chern, Gia-Wei

We present a novel corrugated long-period fiber grating whose transmission spectra are highly sensitive to the applied tensile strain, torsion, and bending due to the periodical index modulation created and changed by these mechanic forces. The induced index modulation can also be experimentally characterized by using a built-in fiber Bragg grating (FBG). The long period fiber gratings possess the following unique properties when used as sensors. As a tensile strain sensor, its resonance loss varies but resonance wavelength remains stable. As a torsion sensor, the wavelength varies with the applied twist rate. As a bending sensor, the cladding-mode resonance grows with the bending curvature

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 8 )

Date of Publication:

Aug 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.