Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Dynamical threshold for a feature detector neural model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chiarantoni, E. ; Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy ; Fornarelli, G. ; Vacca, F. ; Vergura, S.

In this paper a model of neural unit that take into account the effect of mean time decay output (“stress”) observed in the Hodgkin-Huxley model is presented. A simplified version of the stress effect is implemented in a static neuron element by means of a dynamical threshold. A rule to vary the threshold adopting local information is then presented and the effects of this law over the learning are examined in the class of standard competitive learning rule. The properties of stability of this model are examined and it is shown that the proposed unit, under appropriate hypothesis, is able to find autonomously (i.e. without requiring any interaction with other units) a local maximum of density in the input data set space (feature)

Published in:

Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on  (Volume:1 )

Date of Conference: