By Topic

Video-based online face recognition using identity surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongmin Li ; Dept. of Comput. Sci., Queen Mary & Westfield Coll., London, UK ; Shaogang Gong ; Liddell, H.

A multi-view dynamic face model is designed to extract the shape-and-pose-free texture patterns effaces. The model provides a precise correspondence to the task of recognition since the 3D shape information is used to warp the multi-view faces onto the model mean shape in frontal-view. The identity surface of each subject is constructed in a discriminant feature space from a sparse set of face texture patterns, or more practically, from one or more learning sequences containing the face of the subject. Instead of matching templates or estimating multi-modal density functions, face recognition can be performed by computing the pattern distances to the identity surfaces or trajectory distances between the object and model trajectories. Experimental results depict that this approach provides an accurate recognition rate while using trajectory distances achieves a more robust performance since the trajectories encode the spatio-temporal information and contain accumulated evidence about the moving faces in a video input

Published in:

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 2001. Proceedings. IEEE ICCV Workshop on

Date of Conference: