By Topic

A neural network approach for the automatic detection of microaneurysms in retinal angiograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kamel, M. ; Dept. of Syst. Design Eng., Waterloo Univ., Ont., Canada ; Belkassim, S. ; Mendonca, A.M. ; Campilho, A.

In this paper a neural network structure is used to develop a system capable of detecting microaneurysms locations in retinal angiograms. The LVQ (learning vector quantization) neural network is used to classify the input patterns into their desired classes using competitive layers. The neurons in the competitive layers compete among each other to produce subclasses. These subclasses are then combined to produce the desired output classes. The input vector of the neural network is derived from a grid of smaller image windows. The presence of microaneurysms in these windows is detected according to a novel multi-stage training procedure that has proved to be very effective

Published in:

Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on  (Volume:4 )

Date of Conference:

2001