By Topic

A low-power direct digital synthesizer using a self-adjusting phase-interpolation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nosaka, H. ; Photonics Labs., NTT Corp., Kanagawa, Japan ; Yamaguchi, Y. ; Yamagishi, A. ; Fukuyama, H.
more authors

A complete direct digital synthesizer (DDS) using a self-adjusting phase-interpolation technique is fabricated using 0.35-μm CMOS process technology. A self-adjusting delay generator reduces the periodic jitter in the most significant bit (MSB) of the accumulator in this DDS. To improve the spectral performance, a method of spurious signal reduction that uses offset current sources (OCSs) is newly adopted in the delay generator. Test results confirm that the delay generator produces highly accurate delay timing without the need to adjust circuit constants. The measured spurious free dynamic range (SFDR) is 62 dBc for a dc to 10-MHz output and the power consumption of the complete DDS is 39.2 mW at a 100-MHz clock rate

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:36 ,  Issue: 8 )