By Topic

SAFARI: a structured approach for automatic rule

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. A. Wani ; Sch. of Comput. & Math., Teesside Univ., Middlesbrough, UK

This paper describes a new algorithm for obtaining rules automatically from training examples. The algorithm is applicable to examples involving both objects: with discrete and continuous-valued attributes. The paper explains a new quantization procedure fur continuous-valued attributes and shows how appropriate ranges of values of various attributes are obtained. The algorithm uses a decision-tree-based approach for obtaining rules, but unlike other tree-based algorithms such as ID3, it allows more than one attribute at a node which greatly improves its performance. The ability of the algorithm to obtain a measure of partial match further enhances its generalization characteristic. The algorithm produces the same rules irrespective of the order of presentation of training examples. The algorithm has been demonstrated on classification problems. The results have compared favorably with those obtained by existing inductive learning algorithms

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:31 ,  Issue: 4 )