By Topic

Detection of weak chaos in infant respiration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bhattacharya, J. ; Max Planck Inst. fur Phys. Komplexer Syst., Dresden, Germany

This paper concerns the application of newly developed methods for decomposition of an infant respiratory signal into locally stable nonsinusoidal periodic components. Each estimated component has dynamical variation in its three periodicity attributes, i.e., periodicity, scaling factors, and the waveform or pattern associated with the successive segments. Earlier, it has been reported with the application of conventional surrogate analysis and with the cylindrical basis function modeling that the underlying system is distinctly different from linearly filtered Gaussian process, and most probably the human respiratory system behaves as a nonlinear periodic oscillator with two or three degrees of freedom being driven by a high-dimensional noise source. Here, the surrogate analysis is extended and four new types of nonlinear surrogates have been proposed, which are produced by randomizing one or multiple periodicity attributes while preserving certain individual relationships. In this way, a new type of dissection of dynamics is possible, which can lead to a proper understanding of couplings between different controlling parameters

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 4 )