By Topic

Comparison of edge detection algorithms using a structure from motion task

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. C. Shin ; Dept. of Comput. Sci. & Eng., South Florida Univ., Tampa, FL, USA ; D. B. Goldgof ; K. W. Bowyer ; S. Nikiforou

This paper presents an evaluation of edge detector performance. We use the task of structure from motion (SFM) as a "black box" through which to evaluate the performance of edge detection algorithms. Edge detector goodness is measured by how accurately the SFM could recover the known structure and motion from the edge detection of the image sequences. We use a variety of real image sequences with ground truth to evaluate eight different edge detectors from the literature. Our results suggest that ratings of edge detector performance based on pixel-level metrics and on the SFM are well correlated and that detectors such as the Canny detector and Heitger detector offer the best performance.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:31 ,  Issue: 4 )