By Topic

Tracking multiple people with a multi-camera system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. -H. Chang ; Dept. of Comput. Sci., Queen Mary & Westfield Coll., London, UK ; S. Gong

We present a multi-camera system based on Bayesian modality fusion to track multiple people in an indoor environment. Bayesian networks are used to combine multiple modalities for matching subjects between consecutive image frames and between multiple camera views. Unlike other occlusion reasoning methods, we use multiple cameras in order to obtain continuous visual information of people in either or both cameras so that they can be tracked through interactions. Results demonstrate that the system can maintain people's identities by using multiple cameras cooperatively

Published in:

Multi-Object Tracking, 2001. Proceedings. 2001 IEEE Workshop on

Date of Conference: