By Topic

Empirical filter estimation for subpixel interpolation and matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
B. Triggs ; INRIA, CNRS, Montbonnot, France

We study the low-level problem of predicting pixel intensities after subpixel image translations. This is a basic subroutine for image warping and super-resolution, and it has a critical influence on the accuracy of subpixel matching by image correlation. Rather than using traditional frequency-space filtering theory or ad hoc interpolators such as splines, we take an empirical approach, finding optimal subpixel interpolation filters by direct numerical optimization over a large set of training examples. The training set is generated by subsampling larger images at different translations, using subsamplers that mimic the spatial response functions of real pixels. We argue that this gives realistic results, and design filters of various different parametric forms under traditional and robust prediction error metrics. We systematically study the performance of the resulting filters, paying particular attention to the influence of the underlying image sampling regime and the effects of aliasing (“jaggies”). We summarize the results and give practical advice for obtaining subpixel accuracy

Published in:

Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on  (Volume:2 )

Date of Conference: