By Topic

Shape deformation: SVM regression and application to medical image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Song Wang ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Weiyu Zhu ; Zhi-Pei Liang

This paper presents a novel landmark-based shape deformation method. This method effectively solves two problems inherent in landmark-based shape deformation: (a) identification of landmark points from a given input image, and (b) regularized deformation the shape of an an object defined in a template. The second problem is solved using a new constrained support vector machine (SVM) regression technique, in which a thin-plate kernel is utilized to provide non-rigid shape deformations. This method offers several advantages over existing landmark-based methods. First, it has a unique capability to detect and use multiple candidate landmark points in an input image to improve landmark detection. Second, it can handle the case of missing landmarks, which often arises in dealing with occluded images. We have applied the proposed method to extract the scalp contours from brain cryosection images with very encouraging results

Published in:

Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on  (Volume:2 )

Date of Conference: