Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High resolution 3D “snapshot” ISAR imaging and feature extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mayhan, J.T. ; Lincoln Lab., MIT, Lexington, MA, USA ; Burrows, M.L. ; Cuomo, K.M. ; Piou, J.E.

We have developed a new formulation for three dimensional (3D) radar imaging of inverse synthetic aperture radar (ISAR) data based on recent developments in high resolution spectral estimation theory. Typically for non real-time applications, image formation is a two step process consisting of motion determination and image generation. The technique presented focuses on this latter process, and assumes the motion of the target is known. The new technique offers several advantages over conventional techniques which are based on the correlation imaging function. In particular, the technique provides for a direct 3D estimate (versus back projection to a 3D target grid matrix) of the locations of the dominant scattering centers using only a minimum set of independent 2D range-Doppler ISAR “snapshots” of the target. Because of the snapshot nature of the technique, it is particularly applicable to 3D imaging of sectors of sparse-angle data, for which the sidelobes of the correlation imaging integral become high. Furthermore, the technique provides for an estimate of amplitude and phase of each scattering center as a function of aspect angle to the target, for those aspect angles which encompass the set of 2D range-Doppler snapshots. Results illustrating the technique developed are presented for both simulated and static range data

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:37 ,  Issue: 2 )