By Topic

Variability in the execution of multimedia applications and implications for architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hughes, C.J. ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA ; Kaul, P. ; Adve, S.V. ; Jain, R.
more authors

Multimedia applications are an increasingly important workload for general-purpose processors. This paper analyzes frame-level execution time variability for several multimedia applications on general-purpose architectures. There are two reasons for such an analysis. First, it has been conjectured that complex features of such architectures (e.g., out-of-order issue) result in unpredictable execution times, making them unsuitable for meeting real-time requirements of multimedia applications. Our analysis tests this conjecture. Second, such an analysis can be used to effectively employ recently proposed adaptive architectures. We find that while execution time varies from frame to frame for many multimedia applications, the variability is mostly caused by the application algorithm and the media input. Aggressive architectural features induce little additional variability (and unpredictability) in execution time, in contrast to conventional wisdom. The presence of frame-level execution time variability motivates frame-level architectural adaptation (e.g., to save energy). Additionally, our results show that execution time generally varies slowly, implying it is possible to dynamically predict the behavior of future frames on a variety of hardware configurations for effective adaptation

Published in:

Computer Architecture, 2001. Proceedings. 28th Annual International Symposium on

Date of Conference: