By Topic

Low-delay rate control for DCT video coding via ρ-domain source modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

By introducing the new concepts of characteristic rate curves and rate curve decomposition, a generic source-modeling framework is developed for transform coding of videos. Based on this framework, the rate-quantization (R-Q) and distortion-quantization (D-Q) functions (collectively called R-D functions in this work) of the video encoder can be accurately estimated with very low computational complexity before quantization and coding. With the accurate estimation of the R-Q function, a frame-level rate control algorithm is proposed for DCT video coding. The proposed algorithm outperforms the TMN8 rate control algorithm by providing more accurate and robust rate regulation and better picture quality. Based on the estimated R-D functions, an encoder-based rate-shape-smoothing algorithm is proposed. With this smoothing algorithm, the output bit stream of the encoder has both a smoothed rate shape and a consistent picture quality, which are highly desirable in practical video coding and transmission

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:11 ,  Issue: 8 )