By Topic

Laser diode-pumped holmium-doped fluorozirconate glass fiber laser in the green (λ~544-549 nm): power conversion efficiency, pump acceptance bandwidth, and excited-state kinetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Funk, David S. ; Scion Photonics, Milpitas, CA, USA ; Eden, J.G.

The green (544-549 nm) Ho-doped fluorozirconate (ZBLAN) glass fiber laser, pumped in the red (λ~6;15 nm) by a high-power (~30 mW) InGaAlP laser diode or a ring dye-laser, has been characterized with regard to power conversion efficiency, fiber core-diameter and length, cavity output coupling, and pump acceptance bandwidth. Fibers doped with ~1200 ppm (by weight) of Ho and having core diameters of 1.7, 3, and 11 μm, and lengths ranging from 12.5 to 86 cm, have been studied in Fabry-Perot resonators having output couplings ranging from 1.545 to 96%. For a 1.7-μm core-diameter fiber, 21 cm in length, the threshold-launched pump power for the diode-pumped fiber laser is 1.9 and 3.5 mW for cavity output couplings of 1.5% and 24%, respectively. These values are the lowest for any upconversion-pumped fiber laser reported to date. Also, the noise and threshold-pumping power properties of the diode-pumped fiber laser are superior to those for its dye-laser-pumped counterpart. The highest laser slope efficiency (>22% with respect to launched pump power) was measured for a 3-μm core-diameter fiber and a cavity output coupling of 24%. The spectral interval over which the launched threshold pump power for this laser is <10 mW is almost 20 nm (637-656 nm). Studies of the fiber laser waveform as a function of pump power reveal competition for population between the 5S2 and 5F4 states and among the Stark sublevels of the 5F4 manifold. Also, measurements of the output power on individual laser lines of the 5F4, 5S25I8 (ground) transitions of Ho3+:ZBLAN as a function of pump power demonstrate the existence of a loss mechanism at the fiber laser wavelength, presumably due to absorption from ground or the 5Iy, 6S2 or 5F4 excited states of the ion

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 8 )