By Topic

Using neural networks to estimate wind turbine power generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shuhui Li ; Dept. of Electr. Eng., Texas Tech. Univ., Lubbock, TX, USA ; Wunsch, D.C. ; O'Hair, E.A. ; Giesselmann, M.G.

This paper uses data collected at Central and South West Services Fort Davis wind farm (USA) to develop a neural network based prediction of power produced by each turbine. The power generated by electric wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to perform this prediction for diagnostic purposes-lower-than-expected wind power may be an early indicator of a need for maintenance. In this paper, characteristics of wind power generation are first evaluated in order to establish the relative importance for the neural network. A four input neural network is developed and its performance is shown to be superior to the single parameter traditional model approach

Published in:

Energy Conversion, IEEE Transactions on  (Volume:16 ,  Issue: 3 )