By Topic

A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yen-Shin Lai ; Dept. of Electr. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan ; Jian-Ho Chen

In this paper, a new approach to the direct torque control (DTC) of induction motor drives is presented. In comparison with the conventional DTC methods, the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the torque ripple and speed ripple. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations. Experimental results are illustrated in this paper confirming that the proposed DTC method has the above-mentioned features even at the low speed range down to ±1 r/min

Published in:

Energy Conversion, IEEE Transactions on  (Volume:16 ,  Issue: 3 )