By Topic

Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karmalkar, S. ; Dept. of Electr. Eng., Indian Inst. of Technol., Madras, India ; Mishra, Umesh K.

We investigate the breakdown (Vbr) enhancement potential of the field plate (FP) technique in the context of AlGaN/GaN power HEMTs. A comprehensive account of the critical geometrical and material variables controlling the field distribution under the FP is provided. A systematic procedure is given for designing a FP device, using two-dimensional (2-D) simulation, to obtain the maximum Vbr , with minimum degradation in on-resistance and frequency response. It is found that significantly higher Vbr can be achieved by raising the dielectric constant (εi) of the insulator beneath the FP. Simulation gave the following estimates. The FP can improve the Vbr by a factor of 2.8-5.1, depending on the 2-DEG concentration (ns) and εi. For n s=1×1013/cm2, the Vbr can be raised from 123 V to 630 V, using a 2.2 μm FP on a 0.8 μm silicon nitride, and 4.7 μm gate-drain separation. The methodology of this paper can be extended to the design of FP structures in other lateral FETs, such as MESFETs and LD-MOSFETs

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 8 )