By Topic

High performance 0.35 μm gate-length monolithic enhancement/depletion-mode metamorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As HEMTs on GaAs substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dumka, D.C. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Hoke, W.E. ; Lemonias, P.J. ; Cueva, G.
more authors

Monolithic integration of enhancement (E)- and depletion (D)-mode metamorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As/GaAs HEMTs with 0.35 μm gate-length is presented for the first time. Epilayers are grown on 3-inch SI GaAs substrates using molecular beam epitaxy. A mobility of 9550 cm2/V-s and a sheet density of 1.12×10/sup 12/ /sup -2/ are achieved at room temperature. Buried Pt-gate was employed for E-mode devices to achieve a positive shift in the threshold voltage. Excellent characteristics are achieved with threshold voltage, maximum drain current, and extrinsic transconductance of 100 mV, 370 mA/mm and 660 mS/mm, respectively for E-mode devices, and -550 mV, 390 mA/mm and 510 mS/mm, respectively for D-mode devices. The unity current gain cutoff frequencies of 75 GHz for E-mode and 80 GHz for D-mode are reported.

Published in:

Electron Device Letters, IEEE  (Volume:22 ,  Issue: 8 )